The asymmetric cell division process is required for cellular differentiation and embryonic development. Recent evidence obtained in Drosophila and C. elegans suggests that this process occurs by non-equivalent distribution of proteins or mRNA (intrinsic factors) to daughter cells, or by their differential exposure to cell extrinsic factors. In contrast, haploid fission yeast sister cells develop differently by inheriting sister chromatids that are differentiated by epigenetic means. Specifically, the act of DNA replication at the mating-type locus in yeast switches it’s alternate alleles only in one specific member of chromosome 2 sister chromatids in nearly every chromosome replication cycle. To employ this kind of mechanism for cellular differentiation, strictly based on Watson-Crick structure of DNA in diploid organisms, selective segregation mechanism is required to coordinate distribution of potentially differentiated sister chromatids to daughter cells. Genetic evidence to this postulate was fortuitously provided by the analysis of mitotic recombinants of chromosome 7 in mouse cells. Remarkably, the biased segregation occurs in some cell types but not in others and the process seems to be chromosome-specific. This review summarizes the discovery of selective chromatid segregation phenomenon and it suggests that such a process of Somatic Sister chromatid Imprinting and Selective chromatid Segregation (SSIS model) might explain development in eukaryotes, such as that of the body axis left-right visceral organs laterality specification in mice.

Categories of major models for cellular differentiation

Two categories have been proposed for explaining the phenomenon of asymmetric cell division: 1) those that suggest that asymmetry is imposed by the cells’ exposure to extra-cellular environment, and 2) those that postulate that the information for cellular differentiation is found internally in the cell because of asymmetric cell division of the progenitor cell. Prominent among the first type, the morphogen-gradient model, suggests that two initially identical daughter cells become different because they encounter different microenvironments that induce as well as repress different sets of genes of a cell [1–3]. A special case of this hypothesis concerns different stem-cell niches. According to this, precise cellular location influences the stem cell’s division by integrating signals emanating from adjoining cells in the niche to induce daughter cells to differ from one another [4–6]. While the cellular signalling phenomenon is well established, the fate of each daughter cell may also be determined by cell intrinsic factors. In the latter case, either the cytoplasmic cell-fate determinants are segregated into only one of the two daughter cells during mitosis, or alternatively, non-random chromatid segregation to daughter cells occurs to confer non-equivalency on them. It is likely that different combinations of these mechanisms operate in different tissues [7,8].

Sister chromatids are inherently non-equivalent both by DNA strand sequences and by their replication history

Recently, a model suggested that asymmetric cell division might be promoted by differentiation of sister chromatids by epigenetic means, followed by selective segregation of thus differentiated sister chromatids to daughter cells. The chromosomal DNA strands carry genetic information complementary to one another, and both strands serve as a template for the synthesis of the other strand during chromosome duplication [9]. Each chromosome replication event produces two paired...
daughter chromosome copies that in the G2 phase of the cell cycle are conventionally referred to as sister chromatids. One chromatid contains a DNA replication template (‘older’) strand, designated as the Watson [W, Figure 1] strand, and the other is a complementary Crick (C’) strand synthesized in the previous replication cycle. Consequently, its sister chromatid consists of the older C strand and the younger W strand (designated WC chromatid) [10]. Thus, because of differences in the replication history of DNA strands, the sister chromatids are formally non-equivalent even though they carry identical base sequences. It is generally believed that sister chromatids derived from a homologous pair of chromosomes are segregated randomly to daughter cells. In principle, selective chromatid segregation phenomenon might have evolved in diploid organisms to accomplish cellular differentiation [11,12,13*].

In mammals, experiments that monitor genome-wide distribution of labeled nucleotides to sister cells suggest that non-random segregation of DNA strands might occur in cells undergoing asymmetric cell division [14–18,19*,20]. Such is the tenet of the Cairns [21] Immortal Strand Hypothesis for segregating older template-DNA strands to asymmetrically dividing self-renewing B stem cells. This hypothesis was proposed as a mechanism to protect stem cells from inheriting DNA replication errors so as to avoid cancer development in future. However, it has not been possible to definitively ascertain whether all chromosomes undergo asymmetric segregation as biased segregation of only a set of chromosomes can explain the findings. In addition, in most studies it has not been possible to unequivocally identify the stem and non-stem cells in culture or in vivo.

Therefore, the biased segregation cannot be considered as a generally applicable model for stem-cell division.

Discovery of the chromosome-specific chromatid segregation phenomenon

For chromatid asymmetry to serve as one of the mechanisms for cellular differentiation in multi-cellular diploid organisms, a process for selective chromatid segregation is required. Such a Somatic Strand-specific Imprinting and selective chromatid Segregation (SSIS) model would generate non-equivalent daughter cells in mitosis [11]. This model postulated that one daughter cell inherits both WC chromosomes, one copy from each homolog; the other cell thereby inherits both W’C’ copies from the progenitor cell (Figure 1). By specifying only the older chromosome strands of chromatids/chromosomes for simplicity and brevity, the term of WW:CC segregation was coined, where W reflects WC’ and C reflects CW’ strand-containing chromatid/chromosome [10]. The key insight that led to the proposal of this model was derived from an unusual result obtained by inducing mitotic recombination between mouse chromosome (Chr.) 7 homologs [10].

Both the chromatid origin and the distal marker P (for paternal allele) or M (for maternal allele) in the recombinant lines were detected with Southern analysis, by performing methylation-sensitive restriction enzyme digestion of the Sorpm gene located at the middle of Chr. 7 (Figure 2); the M epigenetic allele is methylated in the maternal homolog and unmethylated in the paternal P allele by conventional parent-of-origin imprinting [22*,23*]. The result of experimentally induced recombination with the site-specific Cre/loxP system in mouse embryonic stem cells [ES] [23*] was subsequently interpreted to suggest the existence of the selective chromatid segregation phenomenon [10].

The remarkable result obtained was that in all 432 Chr. 7 recombinants analyzed, each produced an M/M and P/P pair of homozygous progeny (Figure 2). Normally, G2 recombination events between non-sister chromatids are resolved to generate a mixture of homozygous and heterozygous progeny for markers located distal to the crossover point. The result of preferentially homozygous products was also observed in *Drosophila* by employing the distinct FLP/FRT recombination system [24,25]. For
explaining unusual results with both the recombination systems it was suggested that somehow the recombination systems themselves cause recombinant chromatids to segregate always from each other \[23^*,24,25\]. Specifically, a meiotic-reduction-division 1-like process was postulated in which sister chromatids remain attached to each other in regions distal to the crossover point and therefore segregate together to one pole of the mitotic spindle causing markers homozygosis in both daughter cells. Such a ‘sister chromatid cohesion model’ is unlikely, as it requires chromatid segregation to occur through chromosome regions other than the centromeres. Also, this constraint is unlikely to be imposed by two different site-specific recombination systems, that, too, in two different organisms where recombination was induced by systems not indigenous to cells of either species. Moreover, such constraints imposed by the recombination process in mouse cells should have resulted in a similarly biased segregation in other cell types where, instead, an unbiased segregation pattern was observed (see below).

The recombination model employed to discover the biased chromatid segregation phenomenon. Mitotic crossover at the \textit{loxp} sites is experimentally induced by transiently expressing Cre recombinase in cells (modified from \[22^*,23^*\] refs.). The crossover event generates one chromatid with a functional hypoxanthine phosphoribosyl transferase minigene and those colonies inheriting the marker are selected by growing in an appropriate selective medium. The \textit{P} and \textit{M} allelic constitution is determined with Southern analysis. To obtain the result of all recombinants becoming homozygous for \textit{P} and \textit{M} alleles, as in ES and endoderm cells (Table 1), recombination must occur not in the G1 but in the G2 phase, only between specific non-sister chromatids [e.g. \textit{WC} with \textit{WC}], and it must be followed by selective distribution of sister centromeres, as indicated in the drawing. Therefore, all \textit{M/M} and \textit{P/P} homozygous recombinants are interpreted to reflect the WW:CC segregation, and all \textit{P/M} recombinants reflect the WC:WC segregation process. All notations are defined in Figure 1.

Table 1

<table>
<thead>
<tr>
<th>LRD protein implicated in selective segregation.</th>
<th>Wild type</th>
<th>LRD knockdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES and Endoderm</td>
<td>ON</td>
<td>WW:CC</td>
</tr>
<tr>
<td>Neuroectoderm</td>
<td>ON</td>
<td>WW:CC</td>
</tr>
<tr>
<td>Pancreatic, mesoderm and cardiomyocytes</td>
<td>OFF</td>
<td>Random</td>
</tr>
</tbody>
</table>

Expression of the \textit{lrd} dynein gene is inherently regulated by cell type; ON denotes expressed and OFF indicates silent. ND, not done.
An alternative model, proposed to explain the results in ES cells, is that selective distribution of sister chromatids to progeny cells occurs irrespective of mitotic recombination and that it involves centromere-based segregation [10,22]. We advance that this kind of distribution evidences the WW:CC segregation pattern of ES cells. By altering growth conditions, the ES cells containing the site-specific recombination system were changed to several other cell types. Only WW:CC segregation was observed in endodermal cells (Table 1). By contrast, pancreatic, mesodermal, and cardiomyocyte cultures exhibited near random segregation patterns [22]. Thus, the analysis of recombinants constitutes a procedure to discern the segregation mode of a specific chromosome in mitoses. To obtain the homozygous result, it is necessary that a specific pair of non-sister chromatids participate in recombination in the G2 phase, followed by selective segregation of sister centromeres [10]. Furthermore, recombination in the G1 phase may not have occurred, because such events would produce P/M heterozygous recombinants (Figure 2). Perhaps the biased chromatid segregation process itself restricts which pair of chromatids is permitted to recombine in the G2 phase, and second, somehow it also prohibits Chr. 7 pairs of chromatids is permitted to recombine in the G2 biased chromatid segregation process itself restricts which chromatids are permitted to recombine. Furthermore, these must have been generated by recombination in G2 (Figure 2). Thus, neuroectoderm cells must normally undergo asymmetric expression in the embryonic node, transient asymmetric expression of lrd occurs in the head-fold region of 0–5 somite stage mouse embryos. At later stages, lrd is expressed asymmetrically in the floorplate of the neural tube, a midline-signalling centre, and in a region of the embryo shown to be involved in visceral organs’ left–right [LR] development [27–30]. In addition, expression is seen in nonciliated cells [31], in several ciliated cell types in newborn mice, the epithelial lining of the nasal cavity, and in the ependymal lining of the third ventricle of the brain [32]. A spontaneous missense mutation in lrd causes randomization of LR laterality such that one-half of mice develop with mirror-imaged visceral organs, as compared with wild-type mice [33]. The LRD protein’s function in visceral laterality specification in mice was confirmed by generating a targeted deletion of the ATP binding domain of the lrd gene. Like the missense mutation, the deletion mutant similarly produced LR axis randomization [34]. Similarly, homozygous mutants of different subunits of dynein exhibit visceral organs’ randomization in humans [35].

The SSIS model was initially proposed to explain the LR randomization phenotype of the ic [situs inversus] mutant mice. By the model, the ic gene mediates WW:CC segregation [Figure 1] to produce asymmetric cell division in the embryo when initially the visceral laterality is specified [11]. According to the molecular data discussed above from studies of Drosophila, mice and of humans, it is possible that LRD is involved in LR asymmetry through participation in the selective chromatid segregation mechanism. A direct test of this proposal in the selective Chr. 7 segregation process revealed a perfect correlation between lrd mRNA presence/absence and the Chr. 7 segregation mode in all the six cell lineages that were examined [Table 1]. Specifically, lrd is expressed in cultures that follow selective segregation pattern, and it is ‘silent’ in those that follow an unbiased pattern [36]. Second, after lrd inhibition by RNAi, each of the ES, endoderm, and neuroectoderm cell lines disrupted their selective segregation mode [Table 1]. Third, neuroectoderm cells only after LRD depletion produced M/M heterozygous recombinants; these must have been generated by recombination in G2 (Figure 2). Thus, neuroectoderm cells must normally follow the WC:WC segregation mode to produce only P/M heterozygous recombinants where recombined chromatids are always delivered to the same daughter cell. As both the WW:CC and WC:WC selective patterns are observed in different lineages, the recombination process itself could not have dictated the specific segregation pattern.
mode. Rather, selective segregation process is postulated to operate in specific cell lineages \([22^*,36^*]\). These results support the proposal that LRD probably functions directly in the selective Chr. 7 segregation mechanism and support the existence of the selective strand segregation feature of the SSIS model proposed for LR axis determination in vertebrates \([11]\).

The mechanism of how the LR symmetry in the mouse embryo is initially broken remains one of the key unanswered question in developmental biology \([11,37–40]\). Defining the molecular function of the \(lrd\) gene in axis development is required to explain the fascinating LR axis randomization phenotype of the mutant mice. The most popular model for the LRD protein function postulates its role in the motility of monocilia developed on nodal cells of the mouse embryo, called the ‘nodal flow’ hypothesis \([41]\). Notably, the mutant mice develop immotile cilia. According to the nodal flow hypothesis, the cilia-generated leftward embryonic fluid flow establishes an asymmetric gradient of a ‘morphogen’ across the embryo, constituting a mechanism for LR patterning \([42]\). However, it remains a controversial model when applied to LR axis determination. The work in mouse cells supports the possibility that the dynein motor protein plays a cytoplasmic role in LR patterning that is distinct from its function in ciliary motility \([38]\).

The SSIS model was proposed as an alternative to the popular morphogen-gradient model for explaining development of LR asymmetry through asymmetric cell division. This chromosome-based model is based on cell lineage. It is designed to exploit the inherent base sequence difference of W and C strands \([43]\), their replication history, and the epigenetic entities that might differentiate during replication by epigenetic means to contain centromeric inversion in both Chr. 7 homologs should develop \(situs inversus\) in all animals. Furthermore, some of the cell intrinsic factors implicated in promoting asymmetric cell division might function by dictating cellular polarity \([48]\), that we suggest should be required for selective chromatid distribution. For example, the cell-fate determining Numb protein is located in the ‘mother’ centrosome \([49]\), a structure found at the pole of the mitotic spindle. Also, the basal body of monocilia originates from one of the two centrosomes of the spindle. It has been speculated that the sister centromeres might be differentiated during replication by epigenetic means to identify them for biased segregation \([22^*,50^*,51]\). In sum, we hypothesize that SSIS mechanism may be crucial for evolution of form, for cellular differentiation and development, a different sets of chromosomes might be involved in different cell lineages, and for maintaining the integrity of parent-of-origin-specific imprints in somatic lineages by discouraging mitotic recombination through chromosome compartmentalization in the nucleus \([26]\).

Concluding remarks

On the basis of the discovery of new cell biological phenomenon of cell-type regulated selective chromatid segregation that we review here, an interesting new avenue for research has opened up to explain cellular differentiation through asymmetric chromatid distribution \([13^*,47^*]\). Studies of the Cre/loxP and FLP/FRT site-specific recombination systems quoted above were designed only to develop tools for chromosomal manipulation. We propose that this approach also identifies the mode of sister chromatid segregation in normal mitosis. Liu et al. \([23^*]\) conducted their study only with Chr. 7 and 11. Fortuitously, Chr. 7 exhibited two types of selective segregation patterns, which are LRD-dependent, and which change with the cell type \([22^*,36^*]\). These results raise the tantalizing possibility that Chr. 7 might specify LR axis determination in mice. If so, one genetic test of this suggestion is that mice genetically engineered to contain centromeric inversion in both Chr. 7 homologs should develop \(situs inversus\) in all animals. Furthermore, some of the cell intrinsic factors implicated in promoting asymmetric cell division might function by dictating cellular polarity \([48]\), that we suggest should be required for selective chromatid distribution. For example, the cell-fate determining Numb protein is located in the ‘mother’ centrosome \([49]\), a structure found at the pole of the mitotic spindle. Also, the basal body of monocilia originates from one of the two centrosomes of the spindle. It has been speculated that the sister centromeres might be differentiated during replication by epigenetic means to identify them for biased segregation \([22^*,50^*,51]\). In sum, we hypothesize that SSIS mechanism may be crucial for evolution of form, for cellular differentiation and development, a different sets of chromosomes might be involved in different cell lineages, and for maintaining the integrity of parent-of-origin-specific imprints in somatic lineages by discouraging mitotic recombination through chromosome compartmentalization in the nucleus \([26]\).

Acknowledgements

Research in the Laboratory of Experimental Physiology is supported by the General Secretariat of Research and Development, Ministry of Development, Greek Government, and by the Research Academy of the National and Kapodistrian University of Athens. The Intramural Research Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, USA, supports research in the Klar laboratory.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

This review describes the evidence of asymmetric cell division in fission yeast concerning mating-type loci, where a strain-specific imprint leads to the production of non-equivalent sister chromatids. It also gives more insight about the biological importance of segregation phenomenon that might be occurring in mammalian cells.

The authors used pulse-chase labeling with BrdU to mark the putative stem-cell niche and identified a subpopulation of label-retaining satellite cells during growth after injury. It is suggested that some of these cells display selective template-DNA strand segregation during mitosis in the muscle fiber in vivo, as well as in cultures independent of their niche.

By analyzing recombination events of chromosome 7 homologs of mouse cells, the study showed that embryonic stem cells and neuroectoderm cells exhibit non-random chromatin distribution, whereas the mode of distribution is random in mesoderm, cardiomyocyte, and pancreatic cells.

Here the authors demonstrate that mitotic recombination can be reproducibly induced in mouse embryonic stem (ES) cells, by Cre/loxP technology, after transient Cre expression. Notably, much of the recombination occurs in G2 and is followed by unusually by 'X segregation', thus recombinant chromatin segment away from each other during mitosis.

In this paper the involvement of the mouse left-right dynein (LRD) in the mechanism of differential segregation is demonstrated. Additionally, since gene mutations in the LRD gene result in randomization of visceral organs’ laterality, they hypothesized that the organ laterality may be mediated by selective chromatid segregation phenomenon.

39. Tabin C: Do we know anything about how left-right asymmetry is first established in the vertebrate embryo? J Mol Histol 2005, 36:317-323.

 This paper presents detailed predictions of the SSIS model concerning lrd mutant’s developmental phenotypes.

 The authors suggest that non-random partitioning of some chromosome(s), but not of the entire genome, occurs in germline stem cells in the *Drosophila* ovary where they divide asymmetrically to generate a new germline stem cell and a differentiating cystoblast. This recent study supports the SSIS model for cellular differentiation through asymmetric stem-cell division.

 In this mini-review, it is theorized that sister centromeres might be biochemically marked, such as by lagging-strand and leading-strand replication, to help biased segregation of all chromosomes according to the immortal strand hypothesis or only a set of chromosomes according to the SSIS hypothesis.